

Mark Richards

Software Architecture
Patterns

Understanding Common Architectural
Styles and When to Use Them

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13427-3

[LSI]

Software Architecture Patterns
by Mark Richards

Copyright © 2022 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield
Development Editor: Shira Evans
Production Editor: Kristen Brown
Copyeditor: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rob Romano

February 2015: First Edition
July 2022: Second Edition

Revision History for the Second Edition
2022-07-29: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Software Architec‐
ture Patterns, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the publisher
and the author disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

http://oreilly.com

Table of Contents

1. Introduction. 1

2. Architectural Structures and Styles. 5
Architecture Classification 5
Architecture Partitioning 9

3. Layered Architecture. 15
Description 15
Key Concepts 17
Examples 20
Considerations and Analysis 21

4. Microkernel Architecture. 25
Topology 25
Examples 27
Considerations and Analysis 29

5. Event-Driven Architecture. 33
Topology 33
Example Architecture 35
Event-Driven Versus Message-Driven 37
Considerations and Analysis 38

6. Microservices Architecture. 43
Basic Topology 43
What Is a Microservice? 45
Bounded Context 45

iii

Unique Features 47
Examples and Use Cases 48
Considerations and Analysis 49

7. Space-Based Architecture. 55
Topology and Components 56
Examples 60
Considerations and Analysis 61

A. Style Analysis Summary. 65

iv | Table of Contents

CHAPTER 1

Introduction

It’s all too common for developers to start coding an application
without a formal architecture in place. This practice usually results
in ill-defined components, creating what is commonly referred to
as a big ball of mud. These architectures are generally tightly cou‐
pled, brittle, difficult to change, and lack a clear vision or direction.
It’s also very difficult to determine the architectural characteristics
of applications lacking a well-defined architectural style. Does the
architecture scale? What are the performance characteristics of the
application? How easy is it to change the application or add new
features? How responsive is the architecture?

Architecture styles help define the basic characteristics and behavior
of an application. Some architecture styles naturally lend themselves
toward highly scalable systems, whereas other architecture styles
naturally lend themselves toward applications that allow develop‐
ers to respond quickly to change. Knowing the characteristics,
strengths, and weaknesses of each architecture style is necessary to
choose the one that meets your specific business needs and goals.

A lot has happened in software architecture since 2015 when the
first edition of this report was published. Both microservices and
event-driven architecture have gained in popularity, and develop‐
ers and architects have found new techniques, tools, and ways
of designing and implementing these architecture styles. Also, the
widespread use of domain-driven design has led to a better under‐
standing of how architectures are structurally partitioned, and how
that partitioning can impact the design and implementation of a

1

system. The second edition of the report addresses both of these
advances.

The second edition also includes other significant enhancements,
along with more information about the intersection of architecture
and data, and an expanded analysis section at the end of each chap‐
ter. These new sections provide you with better guidelines for when
to use (and not to use) each architecture presented in this report.

Another change you’ll notice in the second edition is the use of
the term architecture style rather than architecture pattern for the
architectures described in this report. This distinction helps alleviate
some of the confusion surrounding the differences between, say,
event-driven architecture—an architecture style—and something
like CQRS (Command Query Responsibility Segregation), which is
an architecture pattern.

An architecture style, such as the ones presented in this report,
describe the macro structure of a system. Architecture patterns, on
the other hand, describe reusable structural building block patterns
that can be used within each of the architecture styles to solve a par‐
ticular problem. Take, for example, the well known CQRS pattern,
which describes the structural separation between read and write
operations to a database or eventing system (for example, separate
services and databases for read operations and write operations).
This architecture pattern could be applied to any of the architecture
styles described in this report to optimize database queries and
updates.

Architecture patterns, in turn, differ from design patterns (such as
the Builder design pattern) in that an architecture pattern impacts
the structural aspect of a system, whereas a design pattern impacts
how the source code is designed. For example, you can use the
Builder design pattern as a way to implement the CQRS architecture
pattern, and then use the CQRS pattern as a building block within
a microservices architecture. Figure 1-1 shows this hierarchical rela‐
tionship among the three terms and how they interrelate with each
other to build software systems.

2 | Chapter 1: Introduction

Figure 1-1. Architecture styles can be composed of architecture pat‐
terns, which in turn can be composed of design patterns

Design patterns and architecture patterns are typically combined to
form a complete solution. Architecture styles act in the same way—
they can also be combined when building software solutions to form
a complete solution. Hybrid architecture styles are common in the
real world because not every architecture style can solve every busi‐
ness problem. Common architecture style hybrids include event-
driven microservices (events between microservices), space-based
microservices (processing units implemented as microservices), and
even an event-driven microkernel architecture (events between the
core system and remote plug-in components). Although forming
hybrids is a common practice, it is vital to understand individ‐
ual architecture styles and their corresponding strengths and weak‐
nesses before combining them.

The goal of this updated second edition report remains the same as
the first edition: to help senior developers and architects understand
some of the more common architecture styles, how they work, when
to use them, and when not to use them. This will help to not only
expand your knowledge of architecture, but will also help you make
the right architecture choice for your systems.

Introduction | 3

CHAPTER 2

Architectural Structures and Styles

Architecture styles allow you to use existing and well-known struc‐
tures that support certain architectural characteristics (also known
as nonfunctional quality attributes, system quality attributes, or
“-ilities”). They not only provide you with a head start on defining
an architecture for a given system, but they also facilitate communi‐
cation among developers, architects, quality assurance testers, oper‐
ations experts, and even in some cases, business stakeholders.

Architecture Classification
Architecture styles are classified as belonging to one of two main
architectural structures: monolithic (single deployment unit) and
distributed (multiple deployment units, usually consisting of serv‐
ices). This classification is important to understand because as a
group, distributed architectures support much different architecture
characteristics than monolithic ones. Knowing which classification
of architecture to use is the first step in selecting the right architec‐
ture for your business problem.

Monolithic Architectures
Monolithic architecture styles (as illustrated in Figure 2-1) are gen‐
erally much simpler than distributed ones, and as such are easier to
design and implement. These single deployment unit applications
are fairly inexpensive from an overall cost standpoint. Furthermore,
most applications architected using a monolithic architecture style

5

can be developed and deployed much more quickly than distributed
ones.

Figure 2-1. Monolithic architectures are single deployment units

While cost and simplicity are the main strong points of a monolithic
architecture, operational characteristics such as scalability, fault tol‐
erance, and elasticity are its weak points. A fatal error (such as an
out of memory condition) in a monolithic architecture causes all
of the functionality to fail. Furthermore, mean time to recovery
(MTTR) and mean time to start (MTTS) are usually measured in
minutes, meaning that once a failure does occur, it takes a long time
for the application to start back up. These long startup times also
impact scalability and elasticity. While scalability can sometimes be
achieved through load balancing multiple instances of the applica‐
tion, the entire application functionality must scale, even if only a
small portion of the overall application needs to scale. This is not
only inefficient, but unnecessarily costly as well.

Examples of monolithic architecture styles include the layered
architecture (described in Chapter 3), the modular monolith, the
pipeline architecture, and the microkernel architecture (described in
Chapter 4).

6 | Chapter 2: Architectural Structures and Styles

Distributed Architectures
As the name suggests, distributed architectures consist of multiple
deployment units that work together to perform some sort of cohe‐
sive business function. In today’s world, most distributed architec‐
tures consist of services, although each distributed architecture style
has its own unique formal name for a service. Figure 2-2 illustrates a
typical distributed architecture.

Figure 2-2. Distributed architectures consist of multiple deployment
units

The superpowers of distributed architectures usually fall within
operational characteristics—things like scalability, elasticity, fault
tolerance, and in some cases, performance. Scalability in these
architecture styles is typically at the individual service level, as is
elasticity. Hence, MTTS and MTTR are much smaller than with a
monolithic application, measured usually in seconds (and in some
cases milliseconds) rather than minutes.

Distributed architectures are well suited for supporting high levels
of fault tolerance. If one service fails, in many cases other services
can continue to service requests as if no fault happened. Services
that do fail can recover very quickly—so quickly that at times an end
user sometimes doesn’t even know the service had a fatal error.

Architecture Classification | 7

Agility (the ability to respond quickly to change) is often another
superpower of distributed architectures. Because application func‐
tionality is divided into separately deployed units of software, it is
easier to locate and apply a change, the testing scope is reduced
to only the service that is impacted, and deployment risk is sig‐
nificantly reduced because only the service impacted is typically
deployed.

Unfortunately, with all those good features come some bad features
as well. Distributed architectures are plagued with what are known
as the fallacies of distributed computing, a set of eight things we
believe to be true about networks and distributed computing, but
are in fact false. Things like “the network is reliable,” “bandwidth is
infinite,” and “latency is zero” all make distributed architectures not
only hard to keep deterministic, but also hard to make completely
reliable. Networks do fail, bandwidth is not infinite, and latency is
not zero. These things are as real today as they were back in the
late ’90s when they were coined.

In addition to the eight fallacies of distributed computing, other
difficulties arise with distributed architectures. Distributed transac‐
tions, eventual consistency, workflow management, error handling,
data synchronization, contract management, and a host of other
complexities are all part of the world of distributed architecture. To
top it off, all this complexity usually means much more cost from an
overall initial implementation and ongoing maintenance cost than
monolithic architectures. Suddenly, all of those great superpowers
don’t sound so great anymore when you consider all the trade-offs of
distributed architectures.

Examples of distributed architectures include event-driven archi‐
tecture (described in Chapter 5), the ever-popular microservices
architecture (described in Chapter 6), service-based architec‐
ture, service-oriented architecture, and space-based architecture
(described in Chapter 7).

Which One Should I Choose?
When choosing between a monolithic versus a distributed architec‐
ture, one question to first ask yourself is if the system you are
creating has different sets of architecture characteristics that must
be supported. In other words, does the entire system need to scale
and support high availability, or only parts of the system? Systems

8 | Chapter 2: Architectural Structures and Styles

https://oreil.ly/7g83B

that contain multiple sets of different architecture characteristics
generally call for a distributed architecture. A good example of this
is customer-facing functionality requiring support for scalability,
responsiveness, availability, and agility, and an administrative or
backend processing functionality that doesn’t need any of those
characteristics.

Simple systems or websites usually warrant the simpler and more
cost-effective monolithic architecture style, whereas more complex
systems that perform multiple business functions usually warrant
more complex distributed architectures. Similarly, the “need for
speed,” the need for high volumes of scalability, and the need
for high fault tolerance are all characteristics that lend themselves
toward distributed architectures.

Architecture Partitioning
Besides being classified as either monolithic or distributed, architec‐
tures can also be classified by the way the overall structure of the
system is partitioned. Architectures, whether they are monolithic
or distributed, can be either technically partitioned or domain par‐
titioned. The following sections describe the differences between
these partitioning structures and why it’s important to understand
them.

Technical Partitioning
Technically partitioned architectures have the components of the
system organized by technical usage. The classic example of a techni‐
cally partitioned architecture is the layered (n-tiered) architecture
style (see Chapter 3). In this architecture style, components are
organized by technical layers; for example, presentation components
that have to do with the user interface, business layer components
that have to do with business rules and core processing, persistence
layer components that interact with the database, and the database
layer containing the data for the system.

Notice in Figure 2-3 that the components of any given domain are
spread across all of these technical layers. For example, the customer
domain functionality resides in the presentation layer as customer
screens, the business layer as customer logic, the presentation layer
as customer queries, and the database layer as customer tables.
Manifested as namespaces, these components would be organized

Architecture Partitioning | 9

as follows: app.presentation.customer, app.business.customer,
app.persistence.customer, and so on. Notice how the second
node in the namespace specifies the technical layering, and that the
customer node is spread across those layers.

Figure 2-3. In a technically partitioned architecture, components are
grouped by their technical usage

Technically partitioned architectures are useful if a majority of your
changes are isolated to a specific technical area in the application.
For example, if you are constantly changing the look and feel of
your user interface without changing the corresponding business
rules, change is isolated to only one part of the architecture (in
this case, the presentation layer). Similarly, if your business rules
are constantly changing but there is no impact to the data layer or
presentation layer, changes are isolated to the business layer of the
architecture with no impact to other parts of the system.

However, imagine implementing a new requirement to add an
expiration data to items for customer wish lists in a technically
partitioned architecture. This type of change is considered a
domain-based change (not a technical usage one), and impacts all of
the layers of the architecture. To implement this change, you would
need to add a new column to the wish list table in the database layer,
change the corresponding SQL in the persistence layer, add the
corresponding business rules to components in the business layer,
change the contracts between the business and presentation layer,

10 | Chapter 2: Architectural Structures and Styles

and finally change the screens in the presentation layer. Depending
on the size of the system and the team structure, this simple change
might involve the coordination of three to four different teams.

Examples of technically partitioned architectures include the lay‐
ered architecture (Chapter 3), microkernel architecture (Chapter 4),
pipeline architecture, event-driven architecture (Chapter 5), and
space-based architecture (Chapter 7). Microkernel architecture is
particularly interesting in that it’s the only architecture style that can
be either technically partitioned or domain partitioned depending
on how the plug-in components are used. For example, when the
plug-in components are used as adapters or special configuration
settings, it would be considered technically partitioned.

Domain Partitioning
Unlike technically partitioned architectures, components in domain
partitioned architectures are organized by domain areas, not tech‐
nical usage. This means that all of the functionality (presentation,
business logic, and persistence logic) is grouped together for each
domain and subdomain area in separate areas of the application. For
domain partitioned architectures, components might be manifested
through a namespace structure such as app.customer, app.ship
ping, app.payment, and so on. Notice that the second node rep‐
resents the domain rather than a technical layer. As a matter of
fact, domains can be further organized into technical layering if so
desired, which might take the form app.customer.presentation,
app.customer.business, and so on. Notice that even though the
customer domain logic may be organized by technical usage, the
primary structure (represented as the second node of the name‐
space) is still partitioned by domain. Figure 2-4 shows a typical
example of a domain partitioned architecture.

Domain partitioned architectures have grown in popularity over
the years in part due to the increased use and acceptance of domain-
driven design, a software modeling and analysis technique coined
by Eric Evans. Domain-driven design places an emphasis on the
design of a domain rather than on complex workflows and technical
components. This approach allows teams to collaborate closely with
domain experts and focus on one key part of the system, thus devel‐
oping software that closely resembles that domain functionality.

Architecture Partitioning | 11

https://oreil.ly/vBRXu
https://oreil.ly/vBRXu

Figure 2-4. In a domain partitioned architecture, components are
grouped by domain area

The clear advantage of domain partitioning within an architecture is
that changes to a particular domain or subdomain are self-contained
within a specific area of the system, allowing teams to pinpoint
exactly the area of the system that requires the change.

Coming back to our implementation of expiration data for a cus‐
tomer’s wish list items, with domain partitioning the changes in
code are isolated to only one small part of the system, making this
type of change much more effective than with technical partitioning.
Here, for example, changes would be isolated to the namespace
starting with app.customer.wishlist, meaning that presentation
logic, business logic, and persistence logic are all within the same
area of the system. Maintenance is easier, testing is easier, and
deployment is much less risky when these types of changes are done.

Examples of domain partitioned architectures include the microker‐
nel architecture (Chapter 4), microservices architecture (Chapter 6),
modular monolith architecture, and service-based architecture. As
indicated earlier, microkernel architecture can be either technically
partitioned or domain partitioned. If the plug-in components are
used to extend the application by adding functionality, then it would
be considered a domain partitioned architecture.

12 | Chapter 2: Architectural Structures and Styles

Which One Should I Choose?
The choice between a technically partitioned architecture and a
domain partitioned architecture is an important one. The overall
structure of the architecture must be aligned not only with the team
structure, but also with the nature of the types of changes expected
in the system in order to be successful and effective.

Technically partitioned architectures (whether monolithic or dis‐
tributed) are well suited when your overall team structure is organ‐
ized by those same technical usage areas. For example, if your
development teams are organized as teams of user interface devel‐
opers, backend developers, and database developers, technically
partitioned architectures would be a good fit because the team struc‐
ture matches the technical layers of the architecture. Technically
partitioned architectures are also a natural fit when most of your
expected changes are aligned with technical layers (for example,
multiple user interfaces, changes to the look and feel of the system,
swapping out one database for another, and so on).

If you are embarking on a new system and using a domain-driven
design approach, then you should in turn consider a domain par‐
titioned architecture. Also, domain partitioned architectures are a
great fit if your teams are organized into cross-functional teams with
specialization—in other words, single teams that are aligned with
specific domain functionality and contain user interface developers,
backend developers, and database developers all on the same physi‐
cal team.

Domain partitioned architectures are also a good choice when you
expect most of your changes to be domain scoped rather than tech‐
nical usage scoped. This allows for much better agility (the ability
to respond quickly to change) than with technically partitioned
architectures. However, be careful when choosing a domain parti‐
tioned architecture if you have lots of changes to technical usage
layers. For example, swapping out one database type for another or
changing the entire user interface framework would be a difficult
and time-consuming task in a domain partitioned architecture.

Architecture Partitioning | 13

CHAPTER 3

Layered Architecture

The most common architecture style is the layered architecture,
otherwise known as the n-tier architecture. This style is the de facto
standard for most applications because it aligns with traditional IT
team structures where teams are organized by technical domains
(such as presentation teams, backend development teams, database
teams, and so on). Because it is so widely known by most archi‐
tects, designers, and developers, the layered architecture is a natural
choice for most business application development efforts. However,
like all architecture styles, it has its strengths and weaknesses and is
not always suitable for some systems.

Description
Components within the layered architecture style are organized
into horizontal layers, each performing a specific role within the
application (such as presentation logic, business logic, persistence
logic, and so on). Although the number of layers may vary, most
layered architectures consist of four standard layers: presentation,
business, persistence, and database (see Figure 3-1). In some cases,
the business layer and persistence layer are combined into a single
business layer, particularly when the persistence logic (such as SQL)
is embedded within the business layer components. Thus, smaller
applications may have only three layers, whereas larger and more
complex business applications may contain five or more layers.

15

Figure 3-1. The layered architecture style is a technically partitioned
architecture

Each layer of the layered architecture style has a specific role and
responsibility within the application. For example, a presentation
layer is responsible for handling all user interface and browser
communication logic, whereas a business layer is responsible for
executing specific business rules associated with the request. Each
layer in the architecture forms an abstraction around the work
that needs to be done to satisfy a particular business request. For
example, the presentation layer doesn’t need to know about how to
get customer data; it only needs to display that information on a
screen in a particular format. Similarly, the business layer doesn’t
need to be concerned about how to format customer data for display
on a screen or even where the customer data is coming from; it only
needs to get the data from the persistence layer, perform business
logic against the data (e.g., calculate values or aggregate data), and
pass that information up to the presentation layer.

Layers are usually manifested through a namespace, package struc‐
ture, or directory structure (depending on the implementation lan‐
guage used). For example, customer functionality in a business
layer might be represented as app.business.customer, whereas in
the presentation layer, customer logic would be represented as app
.presentation.customer. In this example, the second node of the
namespace represents the layer, whereas the third node represents

16 | Chapter 3: Layered Architecture

the domain component. Notice, that the third node of the name‐
space (customer) is duplicated for all of the layers—this is indicative
of a technically partitioned architecture, where the domain is spread
across all layers of the architecture.

One of the powerful features of the layered architecture style is the
separation of concerns among components. Components within a
specific layer deal only with logic that pertains to that layer. For
example, components in the presentation layer deal only with pre‐
sentation logic, whereas components residing in the business layer
deal only with business logic. This type of component classification
makes it easy to build effective roles and responsibility models
into your architecture, and makes it easy to develop, test, govern,
and maintain applications using this architecture style when well-
defined component interfaces and contracts are used between layers.

Key Concepts
In this architecture style, layers can be either open or closed. Notice
in Figure 3-2 that each layer in the architecture is marked as being
closed. A closed layer means that as a request moves from layer to
layer, it must go through the layer right below it to get to the next
layer below that one. For example, a request originating from the
presentation layer must first go through the business layer and then
to the persistence layer before finally hitting the database layer.

So why not allow the presentation layer direct access to either the
persistence layer or database layer? After all, direct database access
from the presentation layer is much faster than going through a
bunch of unnecessary layers just to retrieve or save database infor‐
mation. The answer to this question lies in a key concept known as
layers of isolation.

The layers of isolation concept means that changes made in one
layer of the architecture generally don’t impact or affect components
in other layers: the change is isolated to the components within that
layer, and possibly another associated layer (such as a persistence
layer containing SQL). If you allow the presentation layer direct
access to the persistence layer, then changes made to SQL within
the persistence layer would impact both the business layer and the
presentation layer, thereby producing a very tightly coupled applica‐
tion with lots of interdependencies between components. This type

Key Concepts | 17

of architecture then becomes brittle and very hard and expensive to
change.

Figure 3-2. With closed layers, the request must pass through that layer

The layers of isolation concept also means that each layer is inde‐
pendent of the other layers, thereby having little or no knowledge
of the inner workings of other layers in the architecture. To under‐
stand the power and importance of this concept, consider a large
refactoring effort to convert the presentation framework from the
angular.js framework to the react.js framework. Assuming that the
contracts (e.g., model) used between the presentation layer and the
business layer remain the same, the business layer is not affected by
the refactoring and remains completely independent of the type of
user interface framework used by the presentation layer. The same
is true with the persistence layer: if designed correctly, replacing a
relational database with a NoSQL database should only impact the
persistence layer, not the presentation or business layer.

While closed layers facilitate layers of isolation and therefore help
isolate change within the architecture, there are times when it makes
sense for certain layers to be open. For example, suppose you want
to add a shared services layer to an architecture containing common
service functionality accessed by components within the business
layer (e.g., data and string utility classes or auditing and logging
classes). Creating a services layer is usually a good idea in this case

18 | Chapter 3: Layered Architecture

because architecturally it restricts access to the shared services to the
business layer (and not the presentation layer). Without a separate
layer, there is nothing that architecturally restricts the presentation
layer from accessing these common services, making it difficult to
govern this access restriction.

In the shared services layer example, this layer would likely reside
below the business layer to indicate that components in this services
layer are not accessible from the presentation layer. However, this
presents a problem in that the business layer shouldn’t be required
to go through the services layer to get to the persistence layer. This
is an age-old problem with the layered architecture, and is solved by
creating open layers within the architecture.

As illustrated in Figure 3-3, the services layer in this case should be
marked as open, meaning requests are allowed to bypass this layer
and go directly to the layer below it. In the following example, since
the services layer is open, the business layer is allowed to bypass it
and go directly to the persistence layer, which makes perfect sense.

Figure 3-3. With open layers, the request can bypass the layer below it

Key Concepts | 19

Leveraging the concept of open and closed layers helps define the
relationship between architecture layers and request flows, and pro‐
vides designers and developers with the necessary information to
understand the various layer access restrictions within the architec‐
ture. Failure to document or properly communicate which layers in
the architecture are open and closed (and why) usually results in
tightly coupled and brittle architectures that are very difficult to test,
maintain, and deploy.

Examples
To illustrate how the layered architecture works, consider a request
from a business user to retrieve customer information for a particu‐
lar individual, as illustrated in Figure 3-4. Notice the arrows show
the request flowing down to the database to retrieve the customer
data, and the response flowing back up to the screen to display the
data.

Figure 3-4. An example of the layered architecture

In this example, the customer information consists of both customer
data and order data (orders placed by the customer). Here, the cus‐
tomer screen is responsible for accepting the request and displaying
the customer information. It does not know where the data is, how

20 | Chapter 3: Layered Architecture

it is retrieved, or how many database tables must be queried to get
the data.

Once the customer screen receives a request to get customer infor‐
mation for a particular individual, it then forwards that request to
the customer delegate module in the presentation layer. This module
is responsible for knowing which modules in the business layer can
process that request, and also how to get to that module and what
data it needs (the contract). The customer object in the business layer
is responsible for aggregating all of the information needed by the
business request (in this case to get customer information).

Next, the customer object module invokes the customer DAO (data
access object) module in the persistence layer to get customer data,
and the order DAO module to get order information. These modules
in turn execute SQL statements to retrieve the corresponding data
and pass it back up to the customer object in the business layer.
Once the customer object receives the data, it aggregates the data
and passes that information back up to the customer delegate, which
then passes that data to the customer screen to be presented to the
user.

Considerations and Analysis
The layered architecture is a well-understood and general-purpose
architecture style, making it a good starting point for most applica‐
tions, particularly when you are not sure what architecture style
is best suited for your application. However, there are a couple of
things to consider from an architecture standpoint before choosing
this style.

The first thing to watch out for is what is known as the architec‐
ture sinkhole anti-pattern. This anti-pattern describes the situation
where requests flow through multiple layers of the architecture as
simple pass-through processing with little or no logic performed
within each layer. For example, assume that the presentation layer
responds to a request from the user to retrieve customer data. The
presentation layer passes the request to the business layer, which
simply passes the request to the persistence layer, which then makes
a simple SQL call to the database layer to retrieve the customer
data. The data is then passed all the way back up the stack with no
additional processing or logic to aggregate, calculate, or transform
the data.

Considerations and Analysis | 21

Every layered architecture will have at least some scenarios that fall
into the architecture sinkhole anti-pattern. The key, however, is to
analyze the percentage of requests that fall into this category. The
80-20 rule is usually a good practice to follow to determine whether
or not you are experiencing the architecture sinkhole anti-pattern.
It’s typical to have around 20 percent of the requests as simple
pass-through processing and 80 percent of the requests having some
business logic associated with them. However, if you find that this
ratio is reversed and a majority of your requests are simple pass-
through processing, you might want to consider making some of the
architecture layers open, keeping in mind that while it will be faster,
it will be more difficult to control change due to the lack of layer
isolation.

The layered architecture is still just as viable today as it was in the
old days when it was first introduced. While more modern analysis
and design approaches such as domain-driven design have given
developers and architects a way to think about a problem from
a domain perspective rather than a technical one, there are still
times when technically partitioned architectures (such as the layered
architecture) are more suitable.

When to Consider This Style
The layered architecture is good to consider if the project or initia‐
tive has significant budget or time constraints. Because the layered
architecture is generally considered a monolithic architecture style,
it does not have the complexities of a distributed architecture in
terms of remote access, contract management, and the complica‐
tions resulting from the fallacies of distributed computing described
in the previous chapter. Also, most developers and architects are
familiar with the layered architecture, making it easier to under‐
stand and implement.

Another reason to consider the layered architecture is when a
majority of your changes are isolated to specific layers within the
application. For example, changes isolated to only business rules
that don’t impact the user interface, changes involving only the user
interface look-and-feel, migration to a new user interface frame‐
work, and even migration to a new type of database are all isolated
to a specific layer in the architecture, making it easier to isolate the
components impacted by the change.

22 | Chapter 3: Layered Architecture

Because the layered architecture is a technically partitioned archi‐
tecture, it’s a good fit if the team structure is also technically
partitioned. In other words, if your overall team structure is organ‐
ized as teams of presentation (UI) developers, backend developers,
shared services teams, database teams, and so on, this aligns well
to the overall partitioning of this architecture style (presentation
layer, business layer, persistence layer, and so on). This alignment is
known as Conway’s Law.

When Not to Consider This Style
While there are good reasons to consider the layered architecture
as described in the prior section, unfortunately there are even more
reasons not to consider the layered architecture.

The first reason not to consider the layered architecture is if you
have high operational concerns for your application—things like
scalability, elasticity, fault tolerance, and performance. Because lay‐
ered architectures lend themselves toward a monolithic architecture,
applications built using this architecture style are generally difficult
to scale. While the layered architecture can sometimes scale by split‐
ting the layers into separate physical deployments and/or creating
separate instances of the application in multiple virtual machines, it
becomes very expensive and inefficient because 100% of the applica‐
tion functionality must scale. In addition, the layered architecture is
not very fault-tolerant—a fatal crash in any part of the application
brings down the entire application functionality.

Another reason to avoid the layered architecture is when a major‐
ity of your changes are at a domain level rather than a technical
one. Suppose you are tasked with adding an expiration date to the
customer’s “My Movie List” within a movie streaming application
(movies a customer has queued up to watch later). This new feature
would first require a change to the database schema, then a change
to the SQL in the persistence layer, then a change to the business
rules and contracts in the business layer (such as how long before
expiration, what to do when a movie in your list expires, and so
on), and finally a change to the presentation layer to display the
expiration date beside each movie in the list.

In analyzing this relatively simple change to the “My Movie List”
functionality, notice how every layer of the architecture is impacted
and requires change. In large systems with technically partitioned

Considerations and Analysis | 23

https://oreil.ly/UC512

teams, this might even involve the coordination of multiple teams
(the UI team, backend team, database team, and so on) to make this
change. This not only impacts overall agility (the ability to respond
quickly to change), but also impacts the overall time and effort
involved in making this change.

Lastly, if your overall team structure is organized by cross-functional
domain-based teams (single teams that have UI, backend, and
database expertise focused on a particular domain within the appli‐
cation), the layered architecture is not a good fit because the tech‐
nically partitioned architecture structure is not aligned with the
domain partitioned team structure.

Architecture Characteristics
The chart illustrated in Figure 3-5 summarizes the overall capabili‐
ties (architecture characteristics) of the layered architecture in terms
of star ratings. One star means the architecture characteristic is not
well supported, whereas five stars means it’s well suited for that
particular architecture characteristic.

Figure 3-5. Architecture characteristics star ratings for the layered
architecture

24 | Chapter 3: Layered Architecture

CHAPTER 4

Microkernel Architecture

The microkernel architecture style is a flexible and extensible archi‐
tecture that allows a developer or end user to easily add additional
functionality and features to an existing application in the form of
extensions, or “plug-ins,” without impacting the core functionality
of the system. For this reason, the microkernel architecture is some‐
times referred to as a “plug-in architecture” (another common name
for this architecture style). This architecture style is a natural fit for
product-based applications (ones that are packaged and made avail‐
able for download in versions as a typical third-party product), but
is also common for custom internal business applications. In fact,
many operating systems implement the microkernel architecture
style, hence the origin of this style’s name.

Topology
The microkernel architecture style consists of two types of architec‐
ture components: a core system and plug-in modules. Application
logic is divided between independent plug-in modules and the
basic core system, providing extensibility, flexibility, and isolation
of application features and custom processing logic. Figure 4-1 illus‐
trates the basic topology of the microkernel architecture style.

The core system of this architecture style can vary significantly in
terms of the functionality it provides. Traditionally, the core system
contains only the minimal functionality required to make the sys‐
tem operational (such as the case with older IDEs such as Eclipse),
but it can also be more full featured (such as with web browsers

25

like Chrome). In either case, the functionality in the core system can
then be extended through the use of separate plug-in modules.

Figure 4-1. Microkernel architecture style

Plug-in modules are standalone, independent components that con‐
tain specialized processing, additional features, adapter logic, or
custom code that is meant to enhance or extend the core system
to provide additional business capabilities. Generally, plug-in mod‐
ules should be independent of other plug-in modules and not be
dependent on other plug-ins to function. It’s also important in this
architecture style to keep communication between plug-ins to a
minimum to avoid confusing dependency issues.

The core system needs to know which plug-in modules are available
and how to get to them. One common way of implementing this
is through a plug-in registry. The registry contains information
about each plug-in module, including its name, contract details,
and remote access protocol details (depending on how the plug-in
is connected to the core system). For example, a plug-in for tax
software that flags items as a high risk for triggering an audit might
have a registry entry that contains the name of the service (Audi‐
tChecker), the contract details (input data and output data), and
the contract format (XML). In cases where the contracts and access
protocol are standard within the system, the registry might only
contain the name of the plug-in module and an interface name for
how to invoke that plug-in.

Plug-in modules can be connected to the core system in a variety of
ways. Traditionally, plug-ins are implemented as separate libraries or
modules (such as JAR and DLL files) connected in a point-to-point
fashion (such as a method call via an interface). These separate
modules can then be managed through frameworks such as OSGi

26 | Chapter 4: Microkernel Architecture

(Open Service Gateway Initiative), Java Modularity, Jigsaw, Penrose,
and Prism or .NET environments. When plug-ins are deployed in
this manner, the overall deployment model is that of a monolithic
(single deployment) architecture. Techniques such as dropping a
file in a particular directory and restarting the application are com‐
mon for the microkernel architecture when using point-to-point
plug-ins. Some applications using the previously listed frameworks
can also support runtime plug-in capabilities for adding or changing
plug-ins without having to restart the core system.

Alternatively, plug-ins can also be implemented as part of a single
consolidated codebase, manifested simply through a namespace or
package structure. For example, a plug-in that might perform an
assessment of a specific electronic device (such as an iPhone 12)
for an electronics recycling application might have the namespace
app.plugin.assessment.iphone12. Notice that the second node of
this namespace specifies that this code is a plug-in, specifically for
the assessment of an iPhone 12 device. In this manner, the code in
the plug-in is separate from the code in the core system.

Plug-in modules can also be implemented as remote services, and
accessed through REST or messaging interfaces from the core sys‐
tem. In this case, the microkernel architecture would be consid‐
ered a distributed architecture. All requests would still need to go
through the core system to reach the plug-in modules, but this type
of configuration allows for easier runtime deployment of the plug-in
components, and possibly better internal scalability and responsive‐
ness if multiple plug-ins need to be invoked for a single business
request.

Examples
A classic example of the microkernel architecture is the Eclipse
IDE. Downloading the basic Eclipse product provides you little
more than a fancy editor. However, once you start adding plug-ins,
it becomes a highly customizable and useful product for software
development. Internet browsers are another common example using
the microkernel architecture: viewers and other plug-ins add addi‐
tional capabilities that are not otherwise found in the basic browser
(the core system). As a matter of fact, many of the developer and
deployment pipeline tools and products such as PMD, Jira, Jenkins,
and so on are implemented using microkernel architecture.

Examples | 27

The examples are endless for product-based software, but what
about the use of the microkernel architecture for small and large
business applications? The microkernel architecture applies to these
situations as well. Tax software, electronics recycling, and even
insurance applications can benefit from this architecture style.

To illustrate this point, consider claims processing in a typical insur‐
ance company (filing a claim for an accident, fire, natural disaster,
and so on). This software functionality is typically very complicated.
Each jurisdiction (for example, a state in the United States) has
different rules and regulations for what is and isn’t allowed in an
insurance claim. For example, some jurisdictions allow for a free
windshield replacement if your windshield is damaged by a rock,
whereas other jurisdictions do not. This creates an almost infinite
set of conditions for a standard claims process.

Not surprisingly, most insurance claims applications leverage large
and complex rules engines to handle much of this complexity. How‐
ever, these rules engines can grow into a complex big ball of mud
where changing one rule impacts other rules, or requires an army of
analysts, developers, and testers just to make a simple rule change.
Using the microkernel architecture style can mitigate many of these
issues.

For example, the stack of folders you see in Figure 4-2 represents
the core system for claims processing. It contains the basic business
logic required by the insurance company to process a claim (which
doesn’t change often), but contains no custom jurisdiction process‐
ing. Rather, plug-in modules contain the specific rules for each
jurisdiction. Here, the plug-in modules can be implemented using
custom source code or separate rules engine instances. Regardless of
the implementation, the key point is that jurisdiction-specific rules
and processing are separate from the core claims system and can be
added, removed, and changed with little or no effect on the rest of
the core system or other plug-in modules.

28 | Chapter 4: Microkernel Architecture

Figure 4-2. Microkernel architecture example of processing an
insurance claim

Considerations and Analysis
The microkernel architecture style is very flexible and can vary
greatly in granularity. This style can describe the overarching archi‐
tecture of a system, or it can be embedded and used as part of
another architecture style. For example, a particular event processor,
domain service, or even a microservice can be implemented using
the microkernel architecture style, even though other services are
implemented in other ways.

This architecture style provides great support for evolutionary
design and incremental development. You can produce a minimal
core system that provides some of the primary functionality of a sys‐
tem, and as the system evolves incrementally, you can add features
and functionality without having to make significant changes to the
core system.

Depending on how this architecture style is implemented and used,
it can be considered as either a technically partitioned architecture
or a domain partitioned one. For example, using plug-ins to provide
adapter functionality or specific configurations would make it a
technically partitioned architecture, whereas using plug-ins to pro‐
vide additional extensions or additional functionality would make it
more of a domain partitioned architecture.

Considerations and Analysis | 29

When to Consider This Style
The microkernel architecture style is good to consider as a starting
point for a product-based application or custom application that
will have planned extensions. In particular, it is a good choice for
products where you will be releasing additional features over time or
you want control over which users get which features.

Microkernel architecture is also a good choice for applications or
products that have multiple configurations based on a particular cli‐
ent environment or deployment model. Plug-in modules can specify
different configurations and features specific to any particular envi‐
ronment. For example, an application that can be deployed on any
cloud environment might have a different set of plug-ins that act as
adapters to fit the specific services of that particular cloud vendor,
whereas the core system contains the primary functionality and
remains completely agnostic as to the actual cloud environment.

As with the layered architecture style, the microkernel architecture
style is relatively simple and cost-effective, and is a good choice if
you have tight budget and time constraints.

When Not to Consider This Style
All requests must go through the core system, regardless of whether
the plug-ins are remote or point-to-point invocations. Because of
this, the core system acts as the main bottleneck to this architecture,
and is not well suited for highly scalable and elastic systems. Simi‐
larly, overall fault tolerance is not good in this architecture style,
again due to the need for the core system as an entry point.

One of the goals of the microkernel architecture is to reduce change
in the core system and push extended functionality and code volatil‐
ity out to the plug-in modules, which are more self-contained and
easier to test and change. Therefore, if you find that most of your
changes are within the core system and you are not leveraging the
power of plug-ins to contain additional functionality, this is likely
not a good architecture match for the problem you are trying to
solve.

30 | Chapter 4: Microkernel Architecture

Architecture Characteristics
The chart illustrated in Figure 4-3 summarizes the overall capabili‐
ties (architecture characteristics) of the microkernel architecture in
terms of star ratings. One star means the architecture characteristic
is not well supported, whereas five stars means it’s well suited for
that particular architecture characteristic.

Figure 4-3. Architecture characteristics star ratings for the microkernel
architecture

Considerations and Analysis | 31

CHAPTER 5

Event-Driven Architecture

The event-driven architecture style has significantly gained in popu‐
larity and use over recent years, so much so that even the way we
think about it has changed. This high adoption rate isn’t overly
surprising given some of the hard problems event-driven archi‐
tecture solves, such as complex nondeterministic workflows and
highly reactive and responsive systems. Furthermore, new techni‐
ques, tools, frameworks, and cloud-based services have made event-
driven architecture more accessible and feasible than ever before,
and many teams are turning to event-driven architecture to solve
their complex business problems.

Topology
Event-driven architecture is an architecture style that relies on asyn‐
chronous processing using highly decoupled event processors that
trigger events and correspondingly respond to events happening in
the system. Most event-driven architectures consist of the following
architectural components: an event processor, an initiative event, a
processing event, and an event channel. These components and their
relationships are illustrated in Figure 5-1.

33

Figure 5-1. The main components of event-driven architecture

An event processor (today usually called a service) is the main
deployment unit in event-driven architecture. It can vary in gran‐
ularity from a single-purpose function (such as validating an order)
to a large, complex process (such as executing or settling a finan‐
cial trade). Event processors can trigger asynchronous events, and
respond to asynchronous events being triggered. In most cases, an
event processor does both.

An initiating event usually comes from outside the main system and
kicks off some sort of asynchronous workflow or process. Examples
of initiating events are placing an order, buying some Apple stock,
bidding on a particular item in an auction, filing an insurance claim
for an accident, and so on. In most cases, initiating events are
received by only one service that then starts the chain of events to
process the initiating event, but this doesn’t have to be the case. For
example, placing a bid on an item in an online auction (an initiating
event) may be picked up by a Bid Capture service as well as a Bid
Tracker service.

A processing event (today usually referred to as a derived event) is
generated when the state of some service changes and that service
advertises to the rest of the system what that state change was. The
relationship between an initiating event and a processing event is
one-to-many—a single initiating event typically spawns many differ‐
ent internal processing events. For example, through the course of

34 | Chapter 5: Event-Driven Architecture

a workflow, a Place Order initiating event may result in an Order
Placed processing event, a Payment Applied processing event, a
Inventory Updated processing event, and so on. Notice how an
initiating event is usually in noun-verb format, whereas a processing
event is usually in verb-noun format.

The event channel is the physical messaging artifact (such as a queue
or topic) that is used to store triggered events and deliver those trig‐
gered events to a service that responds to those events. In most cases
initiating events use a point-to-point channel using queues or mes‐
saging services, whereas processing events generally use publish-and
subscribe channels using topics or notification services.

Example Architecture
To see how all of these components work together in a complete
event-driven architecture, consider the example illustrated in Fig‐
ure 5-2 where a customer wants to order a copy of Fundamentals of
Software Architecture by Mark Richards and Neal Ford (O’Reilly). In
this case, the initiating event would be Place Order. This initiating
event is received by the Order Placement service, which then places
the order for the book. The Order Placement service in turn adver‐
tises what it did to the rest of the system through a Order Placed
processing event.

Notice in this example that when the Order Placement service trig‐
gers the Order Placed event, it doesn’t know which other services
(if any) respond to this event. This illustrates the highly decoupled,
nondeterministic nature of event-driven architecture.

Continuing with the example, notice in Figure 5-2 that three dif‐
ferent services respond to the Order Placed event: the Payment
service, the Inventory Management service, and the Notification
service. These services perform their corresponding business func‐
tions, and in turn advertise what they did to the rest of the system
through other processing events.

Example Architecture | 35

Figure 5-2. Processing a book order using event-driven architecture

One thing in particular to notice about this example is how the Noti
fication service advertises what it did by generating a Notified
Customer processing event, but no other service cares about or
responds to this event. So why then trigger an event that no one
cares about? The answer is architectural extensibility. By triggering
an event, the Notification service provides a hook that future
services can respond to (such as a notification tracking service),
without having to make any other modifications to the system.
Thus, a good rule of thumb with event-driven architecture is to
always have services advertise their state changes (what action they
took), regardless if other services respond to that event. If no other
services care about the event, then the event simply disappears from
the topic (or is saved for future processing, depending on the mes‐
saging technology used).

36 | Chapter 5: Event-Driven Architecture

Event-Driven Versus Message-Driven
Is there a difference between an event-driven system and a message-
driven system? It turns out there is, and although subtle, it’s an
important difference to know and understand. Event-driven systems
process events, whereas message-driven systems process messages.

The first difference has to do with the context of what you are
sending to the rest of the system. An event is telling others about
a state change or something you did. Examples of an event include
things like “I just placed an order,” or “I just submitted a bid for an
item.” A message, on the other hand, is a command or request to a
specific service. Examples of a message include things like “apply a
payment to this order,” “ship this item to this address,” or “give me
the customer’s email address.” Notice the difference here—with an
event, the service triggering the event has no idea which services (or
how many) will respond, whereas a message is usually directed to a
single known service (for example, Payment).

Another difference between an event and a message is the owner‐
ship of the event channel. With events, the sender owns the event
channel, whereas with messages, the receiver owns the channel. This
ownership becomes more significant when you consider the contract
of the event or message. Consider the example in Figure 5-3 where
the Order Placement service is sending out a Order Placed event
that is responded to by the Payment service. In this case, the sender
(Order Placement) owns both the event channel and the contract.
In other words, contract changes would be initiated by the Order
Placement service, and the Payment service and all other services
responding to that event would have to conform and adapt to these
changes.

Figure 5-3. With events, the sender owns the event channel and
contract

Event-Driven Versus Message-Driven | 37

However, with messages in a message-driven system, it’s exactly the
opposite—the receiver owns the message channel. As illustrated
in Figure 5-4, the Order Placement service is telling the Payment
service to apply the payment in the form of a command. In this
case, the Payment service owns the message channel (queue) as well
as the message contract. Notice that with message-based processing,
the Order Placement service would need to conform to contract
changes initiated by the Payment service.

Figure 5-4. With messages, the receiver owns the message channel and
contract

The type of event channel artifact is also a distinguishing fac‐
tor between event-driven systems and message-driven systems.
Typically, event-driven systems use publish-and-subscribe messag‐
ing using topics or notification services when triggering events,
whereas message-driven systems typically use point-to-point mes‐
saging using queues or messaging services when sending messages.
That’s not to say event-driven systems can’t use point-to-point mes‐
saging—in some cases point-to-point messaging is necessary to
retrieve specific information from another service or to control the
order or timing of events in a system.

Considerations and Analysis
Because of the asynchronous and decoupled nature of event-driven
architecture, it excels in areas of fault tolerance, scalability, and high
performance. It also provides for excellent extensibility when adding
additional features and functionality. However, while these charac‐
teristics are very attractive, especially for today’s complex systems,
there are plenty of reasons not to use event-driven architecture. The
following two sections outline the reasons to consider event-driven
architecture, and more importantly, when to be cautious about
using it.

38 | Chapter 5: Event-Driven Architecture

When to Consider This Style
Simply put, event-driven architecture is the architecture of choice
for systems that require high performance, high scalability, and high
levels of fault tolerance. However, there are other reasons to con‐
sider this architecture style beyond these architecture characteristic
superpowers.

If the nature of your business processing is reacting to things that
are happening in and around the system (rather than responding to
a user request), then this is a good architecture style to consider. Lis‐
ten to your business stakeholders—are they using words like “event,”
“triggers,” and “react to something happening”? If so, then there’s a
good chance your business problem matches this architecture style.
Also, ask yourself—am I responding to a user request, or reacting
to something the user did? These are great questions to qualify
whether the business problem matches this architecture style.

Event-driven architecture is also a good choice when you have
complex, nondeterministic workflows that are difficult to model.
For decades developers have been building complex decision trees
trying to outline every possible outcome of a complex workflow,
only to continually fail at this fool’s errand. Systems such as these are
sometimes classified as CEP (complex event processing), something
that is managed natively in event-driven architecture.

When Not to Consider This Style
You should not consider this architecture style if most of your
processing is request based. Request-based processing is the typical
situation where a user is requesting data from the database (such as
a customer profile) or doing basic CRUD operations (create, read,
update, delete) on entities in the system. Furthermore, if most of
your processing requires synchronous processing where the user
must wait for processing to be complete for a particular request,
event-driven architecture is likely not the right architecture style for
you.

Because all processing is eventually consistent in event-driven archi‐
tecture, this is not a good architecture style for business problems
that require high levels of data consistency. There is little or no
guarantee of when processing will occur in an event-driven architec‐
ture, so if you are expecting certain data to be there at a certain

Considerations and Analysis | 39

time, look elsewhere for an architecture style, like service-based, that
helps preserve data consistency.

Another reason to walk away from event-driven architecture and
consider a different architecture style is when you need control over
the workflow and timing of events. Both of these are extremely
difficult to manage when doing asynchronous event processing.
For example, imagine the nightmare of coordinating the following
scenario: Event A and Event B must complete processing before
Event C can be triggered, and Event D and Event E must wait for
Event C to finish, but Event D must start processing before Event
E. Good luck managing that mess—you’re better off using orchestra‐
ted service-oriented architecture or orchestrated microservices for
that type of complex coordination.

Error handling is another complexity that causes teams to shy away
from event-driven architecture. Because there is usually no central
workflow orchestrator or controller in event-driven architecture,
when errors occur in a service, it’s up to that service to try to
repair the error. Furthermore, because everything is asynchronous,
other actions may have occurred in the workflow for that event.
For example, suppose an Order Placement service triggers an Order
Placed event for a book that a customer ordered. The Notification
service, Payment service, and Inventory service all respond to the
event at the same time. However, suppose the Notification and
Payment services both respond and complete their processing, but
the Inventory service throws an error because there are no more
books left when the event is received. Now what? The customer
has already been notified and their credit card has been charged,
but there are no more books left to ship to the customer. Should
payment be reversed? Should another notification be sent to the
customer? Should processing just wait until there’s more inventory?
And which service performs all this error handling logic? Error
handing is indeed one of the more complex aspects of event-driven
architecture.

40 | Chapter 5: Event-Driven Architecture

Architecture Characteristics
The chart illustrated in Figure 5-5 summarizes the overall capabil‐
ities (architecture characteristics) of event-driven architecture in
terms of star ratings. One star means the architecture characteristic
is not well supported, whereas five stars means it’s well suited for
that particular architecture characteristic.

Figure 5-5. Architecture characteristics star ratings for event-driven
architecture

Considerations and Analysis | 41

CHAPTER 6

Microservices Architecture

Perhaps the biggest change in architecture since 2012 is the intro‐
duction of microservices. This trend-setting architecture style took
the world by storm, similar to what service-oriented architecture
(SOA) did back in 2006. Over the years we’ve learned a lot about
this revolutionary (and evolutionary) architecture style and how it
addresses many of the complex problems we face in developing soft‐
ware solutions. New tools, techniques, frameworks, and platforms
have come about over the years that make microservices easier to
design, implement, and manage. That said, microservices is perhaps
one of the most complicated architecture styles to get right.

Basic Topology
The microservices architecture style is an ecosystem made up of
single-purpose, separately deployed services that are accessed typ‐
ically through an API gateway. Client requests originating from
either a user interface (usually a microfrontend) or an external
request invoke well-defined endpoints in an API gateway, which
then forwards the user request to separately deployed services. Each
service in turn accesses its own data, or makes requests to other
services to access data the service doesn’t own. The basic topology
for the microservices architecture style is illustrated in Figure 6-1.

43

Figure 6-1. The basic topology of the microservices architecture style

Notice that although Figure 6-1 shows each service associated with
a separate database, this does not have to be the case (and usually
isn’t). Rather, each service owns its own collection of tables, usually
in the form of a schema that can be housed in a single highly avail‐
able database or a single database devoted to a particular domain.
The key concept to understand here is that only the service owning
the tables can access and update that data. If other services need
access to that data, they must ask the owning microservice for that
information rather than accessing the tables directly. The reason‐
ing behind this data ownership approach is described in detail in
“Bounded Context” on page 45.

The primary job of the API gateway in microservices is to hide
the location and implementation of the corresponding services that
correspond to the API gateway endpoints. However, the API gate‐
way can also perform cross-cutting infrastructure-related functions,
such as security, metrics gathering, request-ID generation, and so
on. Notice that unlike the enterprise service bus (ESB) in service-
oriented architecture, the API gateway in microservices does not
contain any business logic, nor does it perform any orchestration or

44 | Chapter 6: Microservices Architecture

mediation. This is critical within microservices in order to preserve
what is known as a bounded context (detailed further in a moment).

What Is a Microservice?
A microservice is defined as a single-purpose, separately deployed
unit of software that does one thing really, really well. In fact, this
is where the term “microservices” gets its name—not from the phys‐
ical size of the service (such as the number of classes), but rather
from what it does. Because microservices are meant to represent
single-purpose functions, they are generally fine-grained. However,
this doesn’t always have to be the case. Suppose a developer creates
a service consisting of 312 class files. Would you still consider that
service to be a microservice? In this example, the service actually
does only one thing really well—send emails to customers. Each of
the 300+ different emails that could be sent to a customer is repre‐
sented as a separate class file, hence the large number of classes.
However, because it does one thing really well (send an email to
a customer), this would in fact be consisted a microservice. This
example illustrates the point that its not about the size of the service,
but rather what the service does.

Because microservices tend to be single-purpose functions, it’s not
uncommon to have hundreds to even thousands of separately
deployed microservices in any given ecosystem or application con‐
text. The sheer number of separate services is what makes microser‐
vices so unique. Microservices can be deployed as containerized
services (such as Docker) or as serverless functions.

Bounded Context
As mentioned earlier, each service typically owns its own data,
meaning that the tables belonging to a particular service are only
accessed by that service. For example, a Wishlist service might own
its corresponding wishlist tables. If other services need wish list
data, those services would have to ask the Wishlist service for that
information rather than accessing the wishlist tables directly.

This concept is known as a bounded context, a term coined by Eric
Evans in his book Domain-Driven Design (Addison-Wesley). Within
the scope of microservices, this means that all of the source code
representing some domain or subdomain (such as a wish list for a

What Is a Microservice? | 45

customer), along with the corresponding data structures and data,
are all encapsulated as one unit, as illustrated in Figure 6-2.

Figure 6-2. A bounded context includes the source code and corre‐
sponding data for a given domain or subdomain

This concept is critical for microservices. As a matter of fact,
microservices as an architecture style wouldn’t exist without the
notion of a bounded context. To illustrate this point, imagine 250
microservices all accessing the same set of tables in a monolithic
database. Suppose you make a structural change (such as dropping
a column or table) that 120 of those services access. This change
would require the coordination of modifying, testing, and deploying
120 separate services at the same time, along with the database
change. This is a scenario that is simply not feasible.

Within microservices, the bounded context not only facilitates
architectural agility (the ability to respond quickly to change), but
also manages change control within a microservices ecosystem.
With the bounded context, only the service that owns the data
needs to change when structural data changes happen. As shown in
Figure 6-3, other services requiring access to data within another
bounded context must ask for the data through a separate contract.
This contract is usually a different representation than that of the
physical database structure of the data, thereby usually not requiring
a change to other services or the contracts.

46 | Chapter 6: Microservices Architecture

Figure 6-3. The bounded context usually isolates changes to just the
service owning the data

Unique Features
Microservices stands apart from all other architecture styles. The
three things that make the microservices architecture style so
unique are distributed data, operational automation, and organiza‐
tional change.

Microservices is the only architecture style that requires data to be
broken up and distributed across separate services. The reason for
this need is the sheer number of services usually found within a
typical microservices architecture. Without aligning services with
their corresponding data within a strict bounded context, it simply
wouldn’t be feasible to make structural changes to the underlying
application data. Because other architecture styles don’t specify the
fine-grained, single-purpose nature of a service as microservices
does, those other architecture styles can usually get by with a single
monolithic database.

Although the practice of associating a service with its corresponding
data in a bounded context is one of the main goals of microservices,
rarely in the real world of business applications does this completely
happen. While a majority of services may be able to own their
own data, in many cases it’s sometimes necessary to share data
between two or more services. Use cases for sharing data between a
handful of services (two to six) range from table coupling, foreign
key constraints, triggers between tables, and materialized views, to

Unique Features | 47

performance optimizations for data access, to shared ownership of
tables between services. When data is shared between services, the
bounded context is extended to include all of the shared tables as
well as all of the services that access that data.

Operational automation is another unique feature that separates
microservices from all other architecture styles, again due to the
sheer number of microservices in a typical ecosystem. It is not
humanly possible to manage the parallel testing, deployment, and
monitoring of several hundred to several thousand separately
deployed units of software. For this reason, containerization is usu‐
ally required, along with service orchestration and management
platforms such as Kubernetes. This also leads to the requirement
of DevOps for microservices (rather than something that’s “nice
to have”). Because of the large number of services, it’s not feasible
to “hand off ” services to separate testing teams and release engi‐
neers. Rather, teams own services and the corresponding testing and
release of those services.

This leads to the third thing that distinguishes microservices from
all other architecture styles—organizational change. Microservices
is the only architecture style that requires development teams to
be organized into domain areas of cross-functional teams with spe‐
cialization (a single development team consisting of user interface,
backend, and database developers). This in turn requires the iden‐
tification of service owners (usually architects) within a particular
domain. Testers and release engineers, as well as DBAs (database
administrators), are also usually aligned with specific domain areas
so that they are part of the same virtual team as the developers.
In this manner, these “virtual teams” test and release their own
services.

Examples and Use Cases
Applications that are well suited for the microservices architecture
style include those that consist of separate and distinct functions
within a business workflow. A classic example of this is a standard
retail-based order entry system. Placing an order, applying a pay‐
ment, notifying a customer, managing inventory, fulfilling the order,
shipping the order, tracking the order, sending out surveys, and data
analytics are all separate and distinct functions that work well as
separately deployed microservices.

48 | Chapter 6: Microservices Architecture

Another interesting use case for microservices is that of business
intelligence and analytics reporting. Each report, query, data feed,
or data analytics can be developed as a separate microservice, all
accessing data within a data lake or data warehouse. Although with
the reporting use case there isn’t a strict bounded context with the
data, this still works as microservices because the underlying schema
structure of a data lake or data warehouse rarely encounters break‐
ing changes. Rather, older schemas are deprecated and new ones are
created to replace them, helping manage the change control issues
usually found with typical microservices architectures operating on
transactional data.

Considerations and Analysis
While microservices is very popular and powerful, it is also perhaps
the hardest architecture style to get right. Service granularity (the
size of a service) is one of the first hard parts of microservices most
teams encounter. Single responsibility principle is unfortunately
highly subjective, making it difficult to gain consensus on the granu‐
larity of a service. For example, is a notification service that sends
out emails and SMS texts single purpose, or is notifying a customer
via email single purpose? Other factors, such as code volatility, fault
tolerance, scalability and throughput, and access control, are more
objective ways of justifying service granularity.

Another hard part of the microservices architecture style is how
services should communicate with each other. Should they use asyn‐
chronous communication or synchronous communication? Should
you use orchestration for your workflows between services using an
orchestration service to act as a mediator, or choreography where
services directly talk to one another? Each of these communication
choices has numerous trade-offs, making it even more difficult to
answer these questions.

Data is yet another hard part of microservices. If a Wishlist ser‐
vice needs product information from the Product Catalog service,
should it ask for the data through inter-service communication via
REST, cache the data it needs using an in-memory data grid, expand
the wishlist table schema to include the necessary product data
it needs, or simply share the product catalog data? Again, these
choices all have trade-offs, making it difficult to choose the most
appropriate option.

Considerations and Analysis | 49

There are many more hard parts about microservices, including
distributed transaction management, contracts, code reuse techni‐
ques, migration patterns, and so on. Fortunately, all of these hard
parts and their corresponding trade-offs are addressed in detail in
the book Software Architecture: The Hard Parts by Neal Ford et al.
(O’Reilly).

When to Consider This Style
One of the first considerations in choosing microservices is to take
a detailed look at your application functionality. Is it feasible to
break apart your application functionality into dozens or hundreds
of separate and distinct pieces of functionality that are independent
from each other? If so, then this is a good architecture to consider as
this is exactly the shape of microservices.

Applications that require high levels of agility (the ability to respond
quickly to change) are well suited for the microservices architec‐
ture style. From a maintainability standpoint, the bounded context
ensures that subdomain functionality and its corresponding data are
bound together, making it easy to locate and make coding changes.
Testing is easier because the testing scope is usually reduced to a
single-purpose service, and as such it’s easier to achieve full regres‐
sion testing. Deployment risk is significantly reduced because what
is usually deployed is only a single service. In most cases this can be
done through a hot deploy in the middle of the day as opposed to
big-bang deployments over a weekend.

Microservices is also a good architecture style to consider if you
have high fault tolerance and high scalability needs. Scalability and
fault tolerance are both at the function level in microservices, and
because mean time to start (MTTS) and mean time to recovery
(MTTR) are so low (usually measured in hundreds of milliseconds),
microservices is also good for elastic systems.

You should also consider microservices if you have plans for lots
of extensibility in your existing architecture. Adding functionality
in microservices is sometimes simply a matter of creating a service,
wrapping it in a container, creating an API endpoint, and deploying
that service. I like to call this technique “drop-in” functionality. In
other words, if you need to add additional features or functionality
to your system, just create a service and drop it into your ecosystem.

50 | Chapter 6: Microservices Architecture

Sounds easy, right? Well, in theory it is, but there are lots of reasons
not to use microservices, which are outlined in the next section.

When Not to Consider This Style
While microservices has lots of benefits and superpowers, there are
definitely reasons to avoid this architecture style and consider others
instead. The first of these considerations is the nature of your work‐
flows. Microservices is all about single-purpose, separately deployed
pieces of software that collectively make up an application. However,
if you find that all of that separately deployed functionality needs
to be tied together with complex workflows and lots of inter-service
communication or orchestration, then this is not an architecture
you should consider.

Perhaps one of the biggest factors for not considering microservices
relates to data. If your data is tightly coupled and monolithic in
nature (meaning it’s not feasible to break apart your data into several
dozen to several hundred separate schemas or databases), then run
away in the opposite direction of microservices. By tightly coupled,
I mean the data is so interrelated with the functionality that while
you can break apart the functionality of an application into multiple
deployment units, those separate deployment units all need access
to the same data. Furthermore, data can be highly coupled in the
form of foreign key constraints, triggers, views, and even stored
procedures (yes, believe it or not, they still exist in the real world).
If your data is too tightly coupled together, consider something like
service-based architecture instead of microservices.

Despite what some articles and blogs say, microservices is perhaps
the most complex architecture style that exists today. Consequently,
it is also very expensive. Licensing fees for platforms, products,
frameworks, and databases all rise exponentially based on the large
number of services in a typical microservices ecosystem. Therefore,
if you have tight cost and time constraints, avoid this architecture
style and select a hybrid such as service-based architecture.

Interestingly enough, most microservices architectures do not
lend themselves well to high-performance or highly responsive
systems. While this may sound surprising, it’s because in reality,
microservices do in fact tend to communicate with each other to
access data and perform additional business functions. Because the

Considerations and Analysis | 51

communication between services is remote, three types of latency
occur: network latency, security latency, and data latency.

Network latency is the amount of time it takes packets of informa‐
tion to reach the target service over the network. Depending on
the type of remote access protocol you are using and the physical
distance between services, this can range anywhere from 30 ms to
300 ms or more.

Security latency is the amount of time it takes to authenticate or
authorize the request to the remote endpoint. Depending on the
level of security and access control on the remote service endpoint,
this latency can range anywhere from a few milliseconds to 300 ms
or more.

Data latency impacts the performance aspects of microservices the
most. Data latency is the amount of time it takes for other services
to query data on your behalf that you don’t own. For example, sup‐
pose the Wishlist service needs to access the product descriptions,
and communicates with the Product Catalog service to request the
data. The Product Catalog service, upon receiving the request,
must make an additional database call to retrieve the product
descriptions. This is something that doesn’t happen when data is
shared in monolithic databases, where a single database call using an
inner or outer join is the only thing required to access multiple types
of data.

Architecture Characteristics
The chart illustrated in Figure 6-4 summarizes the overall capabil‐
ities (architecture characteristics) of microservices architecture in
terms of star ratings. One star means the architecture characteristic
is not well supported, whereas five stars means it’s well suited for
that particular architecture characteristic.

52 | Chapter 6: Microservices Architecture

Figure 6-4. Architecture characteristics star ratings for microservices
architecture

Considerations and Analysis | 53

CHAPTER 7

Space-Based Architecture

Most web-based business applications follow the same general
request flow: a request from a web browser is received by a web
server, then an application server, then finally a database server.
While this type of request flow works great for a small number of
users, bottlenecks start appearing as the user load increases, first
at the web server, then at the application server, and finally at the
database.

The usual response to bottlenecks based on an increase in user
load is to scale out the web servers. This is relatively easy and inex‐
pensive, and sometimes works to address some bottleneck issues.
However, in most cases of high user load, scaling out the web servers
just moves the bottleneck down to the application servers. Scaling
application servers can be more complex and expensive than web
servers, and usually just moves the bottleneck down to the database,
which is even more difficult and expensive to scale. Even if you
can scale the database, what you eventually end up with is a triangle-
shaped topology shown in Figure 7-1, with the widest part of the
triangle being the web servers (easiest to scale) and the smallest part
being the database (hardest to scale).

55

Figure 7-1. The database is usually the ultimate bottleneck for highly
scalable systems

In any high-volume application with an extremely large concurrent
user load, the database will usually be the final limiting factor in
how many transactions you can process concurrently. While various
caching technologies and database scaling and sharding products
help to address these issues, the fact remains that scaling out an
application for extreme loads is a very difficult proposition when it
comes to the database.

The space-based architecture style is specifically designed to address
and solve these sorts of high scalability and concurrency issues. It is
also a useful architecture style for applications that have variable and
unpredictable concurrent user volumes (known as elastic systems).
Solving extreme and variable scalability needs is exactly what space-
based architecture is all about.

Topology and Components
The space-based architecture style addresses the limitations of appli‐
cation scaling by removing the database from the transactional pro‐
cessing of the system—hence the name space-based architecture.
This style gets its name from the computer science term tuple space,

56 | Chapter 7: Space-Based Architecture

the concept of multiple parallel processors with shared memory.
High scalability is achieved by removing the database constraint
and replacing the database with replicated in-memory data grids
during transactional processing. Application data is kept in memory
and replicated among all the active processing units, and synchron‐
ized with a background database asynchronously using data pumps
(more on that in the following section).

Processing units can be dynamically started up and shut down as
user load increases and decreases, thereby addressing variable scala‐
bility. Because there is no database involved in the transactional pro‐
cessing of the system, the database bottleneck is therefore removed,
providing near-infinite scalability within the application. Figure 7-2
illustrates the topology of the space-based architecture style.

Figure 7-2. The space-based architecture style

Services in this architecture style are formally referred to as pro‐
cessing units. A processing unit (illustrated in Figure 7-3) con‐
tains the business functionality and varies in granularity from
a single-purpose function to the entire application functional‐
ity. Each processing unit includes business logic, an in-memory
data grid containing transactional data, and optionally, web-based

Topology and Components | 57

components. Processing units may also communicate with each
other directly or through the processing grid of the virtualized mid‐
dleware (described in the following section).

Figure 7-3. The processing unit contains the application functionality
and an in-memory data grid

The complexity associated with this architecture style is managed
through what is called virtualized middleware. This middleware
manages such things as request and session management, data syn‐
chronization, communication and orchestration between processing
units, and the dynamic tearing down and starting up of processing
units to manage elasticity and user load. The four main architecture
components contained in the virtualized middleware are the mes‐
saging grid, the data grid, the processing grid, and the deployment
manager.

The messaging grid manages input request and session information.
When a request comes into the virtualized middleware component,
the messaging grid component determines which active processing
units are available to receive the request and forwards the request to
one of them. The complexity of the messaging grid can range from
a simple round-robin algorithm to a more complex next-available
algorithm that keeps track of which request is being processed by
which processing unit. Typically, the messaging grid is implemented
through a traditional web server.

58 | Chapter 7: Space-Based Architecture

The data grid component is perhaps the most important and
crucial component in this style. The data grid interacts with the
data-replication engine in each processing unit to manage the data
replication between processing units when data updates occur. Since
the messaging grid can forward a request to any of the processing
units available, it is essential that each processing unit contains
exactly the same data in its in-memory data grid as other processing
units. The data grid is typically implemented through caching prod‐
ucts such as Hazelcast, Apache Ignite, and Oracle Coherence, which
manage the synchronization and replication of the data grids. This
synchronization typically occurs asynchronously behind the scenes
as updates occur in the in-memory data grids.

An additional element of the data grid is a data pump that asyn‐
chronously sends the updates to a database. A data pump can be
implemented in a number of ways, but is typically managed through
persistent queues using messaging or streaming. Components called
data writers asynchronously listen for these updates, and in turn,
update the database. Data writers can be implemented in a number
of ways, varying in granularity from application-level custom data
writers or data hubs to dedicated data writers for each processing
unit type.

In the event of a cold start due to a system crash or a deploy‐
ment, data readers are used, leveraging a reverse data pump to
retrieve data from the database and pump the data to a processing
unit. However, once at least one processing unit having the same
in-memory data grid is populated, additional processing units can
be started and populated without having to retrieve the data from
the database. Figure 7-4 illustrates the data grid containing the in-
memory data grids, data pumps, data writers, and data readers.

The processing grid component of the virtualized middleware is
an optional component that manages distributed processing for
requests that require coordination or orchestration between pro‐
cessing unit types. Orchestration between multiple processing units
can be coordinated through the processing grid, or directly between
processing units in a choreographed fashion.

Topology and Components | 59

https://hazelcast.com
https://ignite.apache.org
https://www.oracle.com/java/coherence

Figure 7-4. The data grid contains the in-memory data grid, data
pumps, and data writers

Finally, the deployment manager component manages the dynamic
startup and shutdown of processing units based on load conditions.
This component continually monitors response times and user
loads, starts up new processing units when the load increases, and
shuts down processing units when the load decreases. It is a critical
component to achieving variable scalability needs within an applica‐
tion, and is usually implemented through container orchestration
products such as Kubernetes.

Examples
Space-based architecture is a very complicated and specialized
architecture style, and is primarily used for high-volume, highly
elastic systems that require very fast performance.

One example of the use of space-based architecture is a concert tick‐
eting system. Imagine what happens when your favorite rock band
announces an opening show and tickets go on sale. Concurrency
goes from a few dozen people to tens of thousands of people within
a matter of seconds, with everyone wanting those same great seats

60 | Chapter 7: Space-Based Architecture

https://kubernetes.io

you want. Continuously reading and writing to a database simply
isn’t feasible with this kind of elastic system at such a high scale and
performance.

Another example of the kind of elastic systems that benefit from
space-based architecture is online auction and bidding systems. In
most cases, sellers have no idea how many people will be bidding,
and bidding always gets fast and furious toward the end of the
bidding process, significantly increasing the number of concurrent
requests. Once the bidding ends, requests go back down to a min‐
imum, and the whole process repeats again as bidding nears the
end—another good example of an elastic system.

High-volume social media sites are another good example where
space-based architecture is a good fit. How do you process hundreds
of thousands (or even millions) of posts, likes, dislikes, and respon‐
ses within a span of a few seconds? Clearly the database gets in
the way of this sort of volume (regardless of elastic behavior), and
removing the database from the transactional processing, as space-
based architecture does, and eventually persisting the data is one
possible solution to this complex problem.

Considerations and Analysis
Space-based architecture is a complex and expensive style to imple‐
ment. As such, it’s not suitable as a general-purpose architecture
like the others reviewed in this report. Rather, it’s meant for spe‐
cific situations such as high scalability, high elasticity, and high
performance.

A unique feature of space-based architecture is its deployment
model. The entire architecture can be solely cloud based, solely
on premises (on prem), or split between the two. This latter deploy‐
ment model is particularly effective for cloud-based data synchroni‐
zation where your main transactional processing is in the cloud, but
your data must remain on prem. In this model, the data writers and
data readers typically reside on prem alongside the database, and
asynchronous data pumps send data to the data writers from the
cloud-based processing units.

Space-based architecture is considered a technically partitioned
architecture because domain functionality is spread across numer‐
ous technical artifacts, including the processing units, in-memory

Considerations and Analysis | 61

data grids, data pumps, data writers, and data readers. A domain-
based change (particularly one involving a change to data) usually
impacts all of these artifacts.

When to Consider This Style
This architecture style is a great fit for those situations where you
have very high concurrent scalability or elasticity requirements. Pro‐
cessing tens of thousands of concurrent requests (or more) becomes
a big challenge when a database is involved, and this architecture
style removes the database from the scalability equation, providing
for near-infinite scalability.

Another use case to consider for this architecture style is those
systems that require very high performance and responsiveness.
Because this architecture style relies on in-memory caching, data
update and retrieval are usually measured in nanoseconds, which
provides the most responsive and high performance architecture
out of all the architecture styles reviewed in this report.

When Not to Consider This Style
Even if you have high scalability and elasticity needs, this archi‐
tecture may not be something you should consider if you have
large data volumes for your transactional processing. Because all
transactional data is stored in memory, the overall size of your
data becomes a limiting factor for space-based architecture. Imagine
trying to take a 45-terabyte relational database and trying to fit that
in memory!

Due to the technical complexity of this architecture style, it is not a
good fit if you have tight budget and time constraints. Furthermore,
achieving very high user loads in a test environment is both expen‐
sive and time consuming, making it difficult to test the scalability
aspects of the application. Because of this, overall agility (the ability
to respond quickly to change) is fairly low in this architecture style.

Because space-based architecture is always eventually consistent, it
may take a lot of time before updates made in the in-memory data
grids reach the database. As such, space-based architecture should
not be considered for those systems that require high levels of data
consistency between data sources.

62 | Chapter 7: Space-Based Architecture

Architecture Characteristics
The chart illustrated in Figure 7-5 summarizes the overall capa‐
bilities (architecture characteristics) of space-based architecture in
terms of star ratings. One star means the architecture characteristic
is not well supported, whereas five stars means it’s well suited for
that particular architecture characteristic.

Figure 7-5. Architecture characteristics star ratings for space-based
architecture

Considerations and Analysis | 63

APPENDIX A

Style Analysis Summary

Figure A-1 summarizes the architecture characteristics scoring for
each of the architecture styles described in this report. One dot
means that the architecture characteristic is not well supported by
the architecture style, whereas five dots means it’s well supported by
that style.

This summary will help you determine which style might be best for
your situation. For example, if your primary architectural concern
is scalability, you can look across this chart and see that the event-
driven style, microservices style, and space-based style are probably
good architecture style choices. Similarly, if you choose the layered
architecture style for your application, you can refer to the chart
to see that deployment, performance, and scalability might be risk
areas in your architecture.

While this chart and report will help guide you in choosing the right
style, there is much more to consider when choosing an architecture
style. You must analyze all aspects of your environment, including
infrastructure support, developer skill set, project budget, project
deadlines, and application size, to name a few. Choosing the right
architecture style is critical, because once an architecture is in place,
it is very hard (and expensive) to change.

65

Figure A-1. Architecture styles rating summary

66 | Appendix A: Style Analysis Summary

About the Author
Mark Richards is an experienced, hands-on software architect
involved in the architecture, design, and implementation of
microservices architectures, service-oriented architectures, and dis‐
tributed systems in a variety of technologies. He has been in the
software industry since 1983 and has significant experience and
expertise in application, integration, and enterprise architecture.
Mark is the founder of DeveloperToArchitect.com, a free website
devoted to helping developers in the journey to becoming a software
architect.

In addition to hands-on consulting and training, Mark has auth‐
ored numerous technical books and videos, including the two lat‐
est books he coauthored, Fundamentals of Software Architecture
(O’Reilly) and Software Architecture: The Hard Parts (O’Reilly).
Mark has spoken at hundreds of conferences and user groups
around the world on a variety of enterprise-related technical topics.
When he is not working, Mark can usually be found hiking in the
White Mountains or along the Appalachian Trail.

https://www.developertoarchitect.com

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Architectural Structures and Styles
	Architecture Classification
	Monolithic Architectures
	Distributed Architectures
	Which One Should I Choose?

	Architecture Partitioning
	Technical Partitioning
	Domain Partitioning
	Which One Should I Choose?

	Chapter 3. Layered Architecture
	Description
	Key Concepts
	Examples
	Considerations and Analysis
	When to Consider This Style
	When Not to Consider This Style
	Architecture Characteristics

	Chapter 4. Microkernel Architecture
	Topology
	Examples
	Considerations and Analysis
	When to Consider This Style
	When Not to Consider This Style
	Architecture Characteristics

	Chapter 5. Event-Driven Architecture
	Topology
	Example Architecture
	Event-Driven Versus Message-Driven
	Considerations and Analysis
	When to Consider This Style
	When Not to Consider This Style
	Architecture Characteristics

	Chapter 6. Microservices Architecture
	Basic Topology
	What Is a Microservice?
	Bounded Context
	Unique Features
	Examples and Use Cases
	Considerations and Analysis
	When to Consider This Style
	When Not to Consider This Style
	Architecture Characteristics

	Chapter 7. Space-Based Architecture
	Topology and Components
	Examples
	Considerations and Analysis
	When to Consider This Style
	When Not to Consider This Style
	Architecture Characteristics

	Appendix A. Style Analysis Summary
	About the Author

